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Abstract. A mathematical model of the dynamics of an inviscid liquid jet, subjected to both gravity and surface
tension, which emerges from rotating drum is derived and analysed using asymptotic and computational methods.
The trajectory and linear stability of this jet is determined. By use of the stability results, the break up length of the
jet is calculated. Such jets arise in the manufacture of pellets (for example, of fertilizer or magnesium) using the
prilling process. Here the drum would contain many thousands of holes, and the molten liquid would be pumped
into the rotating drum. After the jet has broken up into droplets, these droplets solidify to form pellets. The jets in
this prilling process are curved in space by both gravity and surface tension.
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1. Introduction

This paper is motivated by an industrial problem concerning the manufacture of pellets in
the prilling process. Here a sieve-like cylindrical drum rotates about its axis, while molten
liquid is pumped into the top of the drum. Liquid jets emerge from the various holes on the
curved surface of the drum, and the jets break up due to centrifugal and capillary instability.
The droplets produced by break up fall, against a counter current of cool air, and solidify to
form pellets. This prilling process is widely used in industry, including in the manufacture of
fertilizer (urea) and magnesium pellets.

Here we examine a mathematical model for a single inviscid liquid jet emerging from a
rotating drum, determining the trajectory and stability of the jet. The trajectory of the jet is
curved by both the rotation of the drum and by gravity. There have been numerous previous
papers on straight liquid jets. Rayleigh [1] and Weber [2] carried out early studies into the
stability of straight jets. Keller et al. [3] significantly extended these works by introducing the
concept of the spatial stability of jets. There have been many recent studies of the effects of
nonlinearity on the break up mechanisms of a straight liquid jet, including [4–7]. Significant
experimental papers include [8–11]. However, we do not attempt to review all research on
straight liquid jets here but refer the reader to reviews and books [12–15]. There are fewer
previous papers that examine jets or liquid sheets with a curved centre line. Keller and Weitz
[16] examined a liquid sheet which is curved by gravity. Without surface tension the sheet
follows a ballistic path, while surface tension was found to make the sheet fall more sharply.
Keller and Geer [17] analysed a curved slender liquid sheet with both free and solid bound-
aries. Tuck [18] examined a jet falling under gravity, without surface tension, following a
ballistic path.

Wallwork et al. [19] investigated a slender liquid jet subjected to both rotation and surface
tension. Theirs is a good model for prilling only if the rotational forces are much larger than
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Figure 1. Sketch of the container, showing the fixed and rotating coordinate systems, and the directions of rotation
and gravity.

those of gravity. This paper additionally incorporates gravity into this problem. This has the
effect that the centreline of the jet no longer lies in a plane, but is taken off its plane by the
action of gravity. In [19] a new coordinate system was introduced to facilitate the analysis of
this type of system which is a curved variant of cylindrical polar coordinates. One coordinate
is the arc length s along the centreline of the jet. In any cross section of the jet, plane polar
coordinates are then taken. In Cartesian coordinates (x, y, z), the centreline of the jet is given
by x = X, y = Y and z = Z where X,Y and Z are functions of the arc length s and possibly
also time t . These are unknown functions which were found in [19] by solving equations that
are coupled together with the equations of motion of the fluid. In [19], since the centre line lies
in a plane, Y is identically equal to zero. In this current paper, we do not have this condition,
and so we have one extra unknown function to find. However, it will become clear during the
course of our analysis that we have the same number of equations available to us here as in
[19]. We find that we are able to extract a solvability condition from the equations of motion
which gives us the extra equation required for closure.

2. Mathematical model

A liquid jet leaves an orifice O on the curved face of a circular cylindrical container of radius
s0. The orifice is itself taken to be circular with radius a. The container rotates about its axis at
a constant rate � in an anti-clockwise direction when viewed from above relative to fixed axes
(x′, y′, z′). We define a coordinate system (x, y, z) which rotates with the container, having
an origin P on the axis of the container, with the orifice positioned at (s0, 0, 0), see Figure 1.
The acceleration due to gravity g acts in the direction of the negative y axis.

We define an orthogonal coordinate system to describe this curved jet. One coordinate will
be the arc length s along the centre line of the jet. In any cross section of the jet we also
have plane polar coordinates in the radial and azimuthal directions (n, φ). These coordinates
have unit vectors denoted by es, en and eφ respectively, and are shown in Figures 2 and 3. The
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Figure 2. Sketch of the coordinate system, showing the free surface of the jet as bold lines and the centre line of
the jet as a dotted line.

Figure 3. Cross section of the curved jet, showing the radial and azimuthal unit vectors.

centreline of the jet is given by (X(s, t), Y (s, t), Z(s, t)) in the xyz-coordinate system, where
X, Y and Z are (as yet) unknown functions of arc length s and time t .

It will be convenient to write some of our expressions and equations in summation notation.
In that case, the centreline is written as rcl = Xi ei, where e1 = i, e2 = j, e3 = k (i, j and k
are unit vectors in the xyz-coordinate system and X1 = X,X2 = Y,X3 = Z), and X2

i,s = 1
is the standard arc length condition X2

1,s + X2
2,s +X2

3,s = 1 (from ds2 = dX2
1 + dX2

2 + dX2
3).

We calculate the unit vectors in this coordinate system using a principal normal vector p and
a binormal vector b to the centreline (shown in Figure 3. Using summation notation we write
the vectors es, p = ess/|ess | (where ess is the derivative of es with respect to s) and b = p × es

as es = Xi,sei, p = Xi,ssei/
√
Xj,ssXj,ss and b = εijkXj,ssXk,sei/

√
XL,ssXL,ss where εijk = 1

when ijk = 123, 231 or 312, εijk = −1 when ijk = 132, 321 or 213, and εijk = 0 otherwise.
Therefore
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en = 1√
XL,ssXL,ss

(
cosφ Xi,ss + sinφ εijkXj,ssXk,s

)
ei (1)

and

eφ = 1√
XL,ssXL,ss

(− sin φXi,ss + cos φ εijkXj,ssXk,s

)
ei. (2)

Note that the unit vectors are orthogonal to each other (e.g. es · en = 0 because Xi,sXi,ss = 0
from the standard arc length condition) and form a right-handed set. The position vector of
any particle Q relative to the centre of the orifice O is

Or =
∫ s

0
es ds + nen. (3)

The structure functions of this coordinate system hs, hn and hφ are defined as hi = ∣∣∂ r̂/∂i
∣∣

for i = s, n, φ, and are found to be hn = 1, hφ = n and

hs =
∣∣∣∣∣
[
Xi,s + n

∂

∂s

(
cosφXi,ss + sinφ εijkXj,ssXk,s√

XL,ssXL,ss

)]
ei

∣∣∣∣∣ . (4)

The flow is described by the velocity vector u = ues + ven + weφ and pressure p (for
a liquid with constant density ρ). The free surface is positioned at n = R (s, φ, t). We non-
dimensionalise using the following transformations

ū = u

U
, v̄ = v

U
, w̄ = w

U
, p̄ = p

ρU 2
, n̄ = n

a
, ε = a

s0
,

R̄ = R

a
, s̄ = s

s0
, t̄ = tU

s0
, X̄ = X

s0
, Ȳ = Y

s0
, Z̄ = Z

s0
, (5)

where U is the speed of the jet (in the rotating coordinate system) on leaving the orifice.
Using these scalings and dropping overbars for convenience we obtain the continuity equation
∇ · u = 0 as

εn
∂u

∂s
+ h̄sv + nv

∂h̄s

∂n
+ nh̄s

∂v

∂n
+ w

∂h̄s

∂φ
+ h̄s

∂w

∂φ
= 0, (6)

where

h̄s =
∣∣∣∣∣
[
Xi,s + εn

∂

∂s

(
cosφXi,ss + sinφ εijkXj,ssXk,s√

XL,ssXL,ss

)]
ei

∣∣∣∣∣ . (7)

In dimensional variables, Euler’s equations are given by
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∂u
∂t

+ (u.∇)u = − 1

ρ
∇p + g − 2ω × u − ω × (ω × r). (8)

Using the identities (u·∇)u = ∇ (1
2 u2

)−u×∇ × u and ∇2u = ∇ (∇ · u)−∇ × (∇ × u), we
can write these in invariant form. Using the fact that g = −g j and −2ω × u−ω × (ω × r) =
(−2�w + �2x)i + (2�u + �2z)k, where ω = (0,�, 0), r = (x, y, z), shifting the origin
to the orifice O (so that X = Y = Z = 0 at the orifice at s = 0), and by taking into
account the temporal rate of change of unit vectors en, en and eφ in this system, we obtain
non-dimensionalized Euler’s equations as

ε
∂u

∂t
+ T̄s + ε

u

h̄s

∂u

∂s
+ v

∂u

∂n
+ w

n

∂u

∂φ
+ uv

h̄s

∂h̄s

∂n
+ uw

nh̄s

∂h̄s

∂φ
=

− ε

h̄s

∂p

∂s
+ ε

F 2
Ḡs + R̄s, (9)

ε
∂v

∂t
+ T̄n + ε

u

h̄s

∂v

∂s
+ v

∂v

∂n
+ w

n

∂v

∂φ
− u2

h̄s

∂h̄s

∂n
− w2

n
=

−∂p

∂n
+ ε

F 2
Ḡn + R̄n (10)

and

ε
∂w

∂t
+ T̄φ + ε

u

h̄s

∂w

∂s
+ v

∂w

∂n
+ w

n

∂w

∂φ
− u2

nh̄s

∂h̄s

∂φ
+ vw

n
=

−1

n

∂p

∂φ
+ ε

F 2
Ḡφ + R̄φ, (11)

where Ḡs = −Ys ,

Ḡn = − Zsχ3

(cosφχ4 −Xss sin φ)

+ (cosφ (XssZs − ZssXs)+ Yss sinφ) (sin φχ4 +Xss cosφ)

(cos φχ4 −Xss sinφ) χ3
, (12)

Ḡφ = 1

χ3
(cosφ (XssZs − ZssXs)+ Yss sinφ) , (13)

R̄s = ε

Rb2
((X + 1)Xs + ZZs) , (14)
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R̄n = 1

χ3

(−2εuZs/Rb + ε (X + 1) /Rb2) (sinφχ4 + cosφXss)

+ χ1 (χ2 (sinφχ4 +Xss cos φ))

(cos φχ4 −Xss sinφ) χ3
, (15)

R̄φ =
(−2εuZs/Rb + ε (X + 1) /Rb2

)
(cosφχ4 − sinφXss)

χ3
+ χ1χ2

χ3
, (16)

T̄s = ε

χ3
((v cosφ − w sinφ) (XsXsst + YsYsst + ZsZsst)

+ (v sin φ + w cosφ) (Xs (YssZst − YstZss)

+Ys (XstZss −XssZst )+ Zs (XssYst − XstYss))) , (17)

T̄n =
(

εu

χ3 (cosφ (YssZs − ZssYs)−Xss sinφ)

)

× [
Xst (sinφχ4 +Xss cos φ) (cosφχ4 − Xss sinφ)

− Yst (cosφ (XssZs − ZssXs)+ Yss sinφ) (sinφχ4 +Xss cos φ)

+ Zst (cos φ (XssYs − YssXs)− Zss sinφ) (sinφχ4 +Xss cos φ)

+ (YstZs − ZstYs) χ
2
3

]
, (18)

T̄φ = εu

χ3
(− sinφ (XsXsst + YsYsst + ZsZsst)

× cosφ (Xs (YstZss − ZstYss)

+Ys (ZstXss −XstZss)+ Zs (XstYss − YstXss))) , (19)

χ1 = 2εuXs/Rb+εZ/Rb2, χ2 = cosφ (YsXss − YssXs)−Zss sin φ, χ3 = (
X2
ss + Y 2

ss + Z2
ss

) 1
2

and χ4 = YssZs − YsZss .
The kinematic condition is

ε
∂R

∂t
− ε

∂n

∂t
+ ε

u

h̄s

∂R

∂s
+ w

n

∂R

∂φ
= v on n = R. (20)

The normal stress boundary condition in this inviscid flow is conveniently written as p =
κ1/We on n = R, where the curvature κ1 is given by

κ1 = 1

nh̄s


ε2 ∂

∂s




− n

hs

∂R

∂s

E


+ ∂

∂n

(
nhs

E

)
+ ∂

∂φ




−hs

n

∂R

∂φ

E




 , (21)
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and

E =
(

1 + ε2

h̄2
s

(
∂R

∂s

)2

+ 1

n2

(
∂R

∂φ

)2
) 1

2

. (22)

Also, the arc length condition is X2
s + Y 2

s + Z2
s = 1, and the no flux boundary conditions on

the centreline are v = w = 0 on n = 0. Conditions at the orifice are given by X = Y =
Ys = Z = Zs = 0, Xs = 1, R = 1 = u = 1 at s = 0. In the above equations (including
Euler’s equations) we obtain several non-dimensional parameters, the Froude number F =
U/(s0g)

1/2, the Rossby number Rb = U/(�s0) and the Weber number We = ρU 2a/σ (where
σ is the surface tension coefficient), describing the relative importance of the forces due to
gravity, rotation and surface tension, respectively, as well as the aspect ratio ε = a/s0.

3. Steady state

We now determine steady solutions to these equations, including the steady trajectory of the
jet. We will find that the trajectory of the jet is not the same trajectory as would be taken
by a Newtonian particle released from the orifice because of the pressure gradients in the
liquid. In order to determine the trajectory we use our coordinate system described in the
previous section. We note that we are in an unusual mathematical position: the location of one
of the axes of the coordinate system, the jet’s centreline (or trajectory), is itself an unknown
to be determined in this problem, and we determine the location of this coordinate axis by
solving equations that are coupled together with the equations of motion of the liquid (Euler’s
equations, etc.). Using a slender jet assumption, we seek an expression for the steady state.
We pose the expansions

u =u0(s)+ εu1(s, n, φ)+ · · · , (23)

v =εv1(s, n, φ)+ ε2v2(s, n, φ)+ · · · , (24)

p =p0(s, n, φ)+ εp1(s, n, φ)+ · · · , (25)

R =R0(s)+ εR1(s, φ)+ · · · , (26)

X =X0(s)+ εX1(s)+ · · · , (27)

Y =Y0(s)+ εY1(s)+ · · · , (28)

Z =Z0(s)+ εZ1(s)+ · · · , (29)

withw = 0, so that the velocity at leading-order is tangential to the centreline of the jet. (There
may also be solutions for which w �= 0. However, we will leave this additional complexity for
future work.) Substituting these expressions in the non-dimensional jet equations (note that
we write X0, Y0 and Z0 as X, Y and Z, respectively, for simplicity) we obtain at leading order

nu0s + v1 + nv1n = 0, (30)

u0u0s = −p0s − Ys

F 2
+ 1

Rb2 ((X + 1)Xs + ZZs) , (31)
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p0n = 0, (32)

u2
0 cosφ

(
X2
ss + Y 2

ss + Z2
ss

) 1
2 = −p1n

− 1

F 2

Zs

(
X2
ss + Y 2

ss + Z2
ss

) 1
2

(cosφ (YssZs − YsZss)−Xss sinφ)

+(sinφ (YssZs − ZssYs)+Xss cosφ) (cos φ (XssZs − XsZss)+ Yss sinφ)

F 2 (cosφ (YssZs − YsZss)−Xss sinφ)
(
X2
ss + Y 2

ss + Z2
ss

) 1
2

+
(

−2u0Zs

Rb
+ X + 1

Rb2

)sinφ (YssZs − ZssYs)+Xss cos φ(
X2
ss + Y 2

ss + Z2
ss

) 1
2




−
(

2u0Xs

Rb
+ Z

Rb2

) Ys
(
X2
ss + Y 2

ss + Z2
ss

) 1
2

(cosφ (YssZs − ZssYs)−Xss sinφ)
−Q


 , (33)

p0φ = 0, (34)

−u2
0 sinφ

(
X2
ss + Y 2

ss + Z2
ss

) 1
2 = −1

n
p1φ

+ 1

F 2

(cosφ (XssZs −XsZss)+ Yss sin φ)(
X2
ss + Y 2

ss + Z2
ss

) 1
2

+
(

−2u0Zs

Rb
+ X + 1

Rb2

)cosφ (YssZs − ZssYs)− Xss sinφ(
X2
ss + Y 2

ss + Z2
ss

) 1
2




+
(

2u0Xs

Rb
+ Z

Rb2

) (cosφ (YsXss − YssXs)− Zss sinφ)(
X2
ss + Y 2

ss + Z2
ss

) 1
2


 , (35)

u0R0s = v1 on n = R0, p0 = 1/nWe on n = R0,

p1 = − 1

We

(
− 1

R2
0

(
R1 + R1φφ

)+ cosφ
(
X2
ss + Y 2

ss + Z2
ss

) 1
2

)
on n = R0, (36)

v1 = 0 on n = 0, and X2
s + Y 2

s + Z2
s = 1, where Q = Q1Q2/ (Q3Q4) and Q1 =

cosφ (YsXss − YssXs) − Zss sin φ, Q2 = sinφ (YssZs − YsZss) + Xss cos φ, Q3 = cosφ

(YssZs − ZssYs)−Xss sinφ, and Q4 = (
X2
ss + Y 2

ss + Z2
ss

) 1
2 .
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Solving this set of equations we obtain

p0 = 1

R0We
, (37)

u0 =
(

1 − 2Y

F 2
+ 1

Rb2

(
X2 + 2X + Z2

)+ 2

We

(
1 − 1

R0

)) 1
2

, (38)

v1 = −n

2

du0

ds
, (39)

p1 = − n

WeR0
cosφ

(
X2
ss + Y 2

ss + Z2
ss

) 1
2 − h1(s), (40)

ZsXss −XsZss

F 2
− 2Yssu0

Rb

+(X + 1) (YssZs − ZssYs)

Rb2 + Z (YsXss − YssXs)

Rb2 = 0, (41)

(
u2

0 − 1

WeR0

) (
X2
ss + Y 2

ss + Z2
ss

)

= −Yss

F 2
+ 2u0

Rb
(XsZss − ZsXss)+ 1

Rb2 ((X + 1)Xss + ZZss) (42)

and
dR0

ds
= R0

(
Ys/F

2 − ((X + 1)Xs + ZZs) /Rb2
)

2
(
u2

0 + 1/(2WeR0)
) , (43)

where h1(s) could be found at next order.
We note that Equation (41) is a solvability condition. As discussed in the introduction,

comparing this trajectory calculation to the one carried out in [19], we have one extra unknown
function here (namely Y ). This is because the centreline here does not lie in a plane due to the
action of gravity. Equation (41) is the extra equation needed for us to close our system. Note
that as F → ∞ with Y = 0, the above set of equations tends to those in [19], and Equation
(41) becomes identically satisfied. Equation (41) arises as follows. Equations (33) and (35)
can be manipulated to give

sinφ
∂p1

∂n
+ cosφ

n

∂p1

∂φ
= H (s) , (44)

whereH (s) is a function of s only. Therefore, p1 = n sinφH (s)+n cosφg (s)−h1 (s), where
g (s) is some function of s only. Boundary condition (36) then gives a second-order ordinary
differential equation for R1. Since R1 must be periodic with period 2π , it must not have
particular solutions of the form φ cosφ or φ sinφ. Therefore the inhomogeneous parts of this
differential equation which could drive such non-periodic terms must have zero coefficients.
Therefore, H (s) = 0 which gives Equation (41), as well as an equation for g (s).
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We solve these equations numerically (using a Runge-Kutta-Merson scheme - NAG library
routine D02BBF) subject to the initial conditions Xs = 1, X = Y = Ys = Z = Zs = 0 and
R0 = u0 = 1. Figure 4 shows the centrelines of jets for various Weber numbers. We see
that the centreline forms a helical shape with growing radius as it leaves the orifice. Making
the Weber number smaller has the effect of making the loops coil more tightly and fall more
sharply.

Figure 5 shows the centre lines of jets for different Froude numbers. Decreasing the Froude
number has the effect of making the jet fall faster. Figure 6 shows the centrelines of jets for
different Rossby numbers. Decreasing the Rossby number makes the jet coil more tightly.

Examining the small s asymptotics of our steady equations we find

X = s − We2
(
Rb2 + 4F 4

)
6F 4Rb2(1 − We)2

s3 +O(s4) , (45)

Y = We

2F 2(1 − We)
s2 +O(s3) , (46)

Z = We

Rb(We − 1)
s2 +O(s3) , (47)

R0 = 1 − We

Rb2(2We + 1)
s +O(s2) (48)

and

u0 = 1 + 2We

Rb2(2We + 1)
s +O(s2) . (49)

Note there is 0 singularity at We = 1, which we also find in numerical solutions. This
singularity has also been found in other problems [17, 20–22], and our numerical solutions
close to We = 1 have features in common with the ones found in these papers [23, pp. 65–
72]. This singularity can be removed by imposing more specific exit conditions for the jet
at the nozzle (as described in [21–22]), and arises because the jet is significantly affected
by the menisci at the contact point with the solid surface when the Weber number is small.
However, in prilling, the Weber number is large and the results presented here are unaffected
by this singularity, and so this is not of immediate concern in this paper. This is the subject of
ongoing research.

4. Temporal stability

We now perturb about the steady state found in the previous section to analyse the temporal
stability of our solution. We perturb the velocity field by adding onto u a time-dependent
perturbation δũ, where δ is small. We perturb the pressure p by adding on a time-dependent
perturbation δp̃. We perturb the position of the free surface R by adding on δR̃. We perturb
X, Y and Z by adding on δεX̃, δεỸ and δεZ̃. (Note that if the ε’s in the perturbation for the
position of the centreline are omitted then it is possible to show that the leading-order pertur-
bations for X, Y and Z in ε are identically equal to zero, and the first non-zero pertubations
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Figure 4. Graph of the centre line of various jets for F = 16 and Rb = 2. The lines show We = 50, We = 18000
and We = 20. The tightest coiled curve corresponds to the smallest Weber number and the least tightly coiled
curve has the largest Weber number. The small circle next to the start of the jet shows the container.

Figure 5. Graph of the centre line of various jets for Rb = 2 and We = ∞. The lines show F = 16, F = 10 and
F = 5. The curve which falls most rapidly is for the smallest Froude number. The curve which falls the least is
for the largest Froude number. The circle shows the container.

are those given here.) Since droplets produced by jet instability have a radius comparable to
the radius of the jet we must introduce a multiple length scale into our stability analysis [19].
Looking for a distinguished limit we find that all of these perturbations are functions of s, s̄, t
and t̄ where s̄ = s/ε and t̄ = t/ε. Perturbations of the velocity and the pressure (ũ and p̃) are
additionally functions of n and φ, while the perturbation for the free surface R̃ is a function
of φ in addition to s, s̄, t and t̄ .

We substitute the above perturbations in our equations and find the O (δ) equations. At
leading order in ε these give
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Figure 6. Graph of the centre line of various jets for F = 16 and We = ∞. The lines show Rb = 1, Rb = 2 and
Rb = 5. The most tightly coiled curve is for the smallest Rossby number. The least tightly coiled curve is for the
highest Rossby number. The circle shows the container.

n
∂ũ

∂s̄
+ ṽ + n

∂ṽ

∂n
+ ∂w̃

∂φ
= 0, (50)

∂ũ

∂t̄
+ u0(s)

∂ũ

∂s̄
= −∂p̃

∂s̄
, (51)

∂ṽ

∂t̄
+ u0(s)

∂ṽ

∂s̄
− u0(s) cos φP1 − cosφ u2

0(s)P2 = −∂p̃

∂n
, (52)

∂w̃

∂t̄
+ u0(s)

∂w̃

∂s̄
+ u0(s) sin φP1 + sinφ u2

0(s)P2 = −1

n

∂p̃

∂φ
, (53)

∂R̃

∂t̄
+ cosφ

((
X2
ss + Y 2

ss + Z2
ss

)− 1
2

(
Xss

∂X̃

∂t̄
+ Yss

∂Ỹ

∂ t̄
+ Zss

∂Z̃

∂t̄

))

−ṽ + u0(s)
∂R̃

∂s̄
= 0 on n = R0, (54)

p̃ = 1

We

(
− 1

R2
0

(
R̃ + ∂2R̃

∂φ2

)
+ cosφP2 − ∂2R̃

∂s̄2

)
on n = R0, (55)

ṽ = w̃ = 0 on n = 0, (56)

Xs

∂X̃

∂s̄
+ Ys

∂Ỹ

∂s̄
+ Zs

∂Z̃

∂s̄
= 0 (57)
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and

0 =
(
Z

Rb2 − 2u0Xs

Rb

)(
Ys
∂X̃

∂2s̄
−Xs

∂Ỹ

∂2s̄

)

+ 1

F 2

(
Zs

∂X̃

∂2s̄
−Xs

∂Z̃

∂2s̄

)
+
(
(X + 1)

Rb2 − 2u0Zs

Rb

)(
Zs

∂Ỹ

∂2s̄
− Ys

∂Z̃

∂2s̄

)
, (58)

where

P1 = (
X2
ss + Y 2

ss + Z2
ss

)− 1
2

(
Xss

∂2X̃

∂s̄∂ t̄
+ Yss

∂2Ỹ

∂s̄∂ t̄
+ Zss

∂2Z̃

∂s̄∂ t̄

)
, (59)

P2 = (
X2
ss + Y 2

ss + Z2
ss

)− 1
2

(
Xss

∂2X̃

∂2s̄
+ Yss

∂2Ỹ

∂2s̄
+ Zss

∂2Z̃

∂2s̄

)
, (60)

We solve these equations by posing modal expansions, and also by expanding the φ-
dependent perturbations into Fourier series in φ. Thus(

ũ, ṽ, w̃, p̃, R̃
)

= T
((

iū1(n, s), v̄1(n, s), w̄1(n, s), p̄1(n, s), R̄1(s)
)

+
∞∑
m=1

(
iūm0(n, s), v̄m0(n, s), w̄m0(n, s), p̄m0(n, s), R̄m0(s)

)
cos(mφ)

+ (iūm1(n, s), v̄m1(n, s), w̄m1(n, s), p̄m1(n, s), R̄m1(s)
)

sin(mφ)
)+ c.c, (61)

X̃ = T X̄1 +c.c., Ỹ = T Ȳ1 +c.c. and Z̃ = T Z̄1 +c.c., where c.c. denotes complex conjugate,
and

T = exp(ik(s)s̄ + λ(s)t̄). (62)

These equations are then easily solved and we obtain expressions for the eigenvalues λ =
λm where

λm = −iku0 ±
√

1

We

(
1

R2
0

(
1 −m2

)− k2

)
k
I ′
m(kR0)

Im(kR0)
, (63)

and Im is a modified Bessel function. For m > 0 this gives an infinite set of neutrally stable
modes. The axisymmetric mode corresponding to m = 0 can be unstable. The perturbations
associated with this mode are found to be

ū1 = A1(s)I0(kn), v̄1 = A1(s)I1(kn),

w̄1 = 0, p̄1 = −A1(s)
λ+ iku0

k
I0(kn),

R̄1 = v̄1

λ+ iku0
, (64)
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Figure 7. Graph showing the growth rate Re(λ0) of the most unstable mode against s for various Rossby numbers
(We = 10, F = 10). The top line shows Rb = 1, the middle line Rb = 2 and the bottom line Rb = 10.

where A1(s) could be determined at the next order. Note that this mode appears to be the
same mode as found in [1] for a straight jet. However, here R0, u0, k and λm are all functions
of the arc length s, whereas they are all constant for Rayleigh’s straight jet. This mode is
unstable when 0 < k < 1/R0, and the maximum value of the growth rate Re(λ0) occurs
when k = k∗ = 0.697/R0. (Note that the perturbations associated with the neutrally stable
modes are given by lengthy expressions which can be found in [23].)

Figures 7 and 8 show the growth rate of the most unstable mode plotted against arc length
for various parameter values. We see that the mode grows more quickly for lower values of
Rb or F .

5. Spatial stability and break up length

We now consider a mode of the form exp
(
ik(s)s̄ + λ(s)t̄

)
where k is considered complex,

while λ (= −iω) is purely imaginary (and ω is the real frequency). The mode is unstable
when Im(k) < 0, and the largest growth rate corresponds to the most negative value of
Im(k). This spatial stability approach is physically more relevant than the temporal stability
approach described in the previous section when the jet emerges from a nozzle [3].

Figures 9 and 10 show numerical solutions of the eigenvalue relation for the mode m = 0.
The figures show Re(k) and Im(k) respectively for the most unstable mode for each value of
s. The most unstable mode is found by maximising the growth rate −Im(k)s̄ for each value
of s.

By varying the parameters we find that increasing the Froude number F (while holding We
and Rb fixed) increases the growth rate of the mode |s̄Im(k)|; increasing the Rossby number
Rb (while holding We and F fixed) increases the growth rate; increasing the Weber number
We (while holding Rb and F fixed) decreases the growth rate. Reference [23] contains many
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Figure 8. Graph showing the growth rate Re(λ0) of the most unstable mode against s for various Froude numbers
(Rb = 2, We = 10). The top line shows F = 0·5, the middle line F = 1 and the bottom line F = 16.

graphs from an extensive investigation of the three parameter space (We, F and Rb) for both
the steady state and linear stability calculations.

Comparing Figures 7 and 10 we see that decreasing Rb (i.e. increasing the rate of rotation)
increases the growth rate of a mode growing with time, but decreases the growth rate of a mode
growing with distance along the jet. These statements are not contradictory since the speed
of the jet (the speed of the steady mean flow and the speed of time-dependent disturbances)
increases when Rb is decreased. Similar comments apply to variations with F .

The linear stability results can be used to estimate the break up length of the jet. This is
achieved by equating the leading-order steady solution for the free surface and the modulus of
the leading-order unsteady solution for the perturbation of the free surface. We can prove that
the small parameter δ is equal to

√
ε by using a distinguished limit argument on the nonlinear

perturbation equations (see [5,19,23]). Figure 11 shows the ratio of the break up length of the
jet to the radius of the jet plotted against

√
We for three different combinations of the Froude

and Rossby numbers. Here we have chosen |A| = 0·01 and ε = 0·01. Note that the lines on
this graph are straight. This is the same as for a straight jet [14].

6. Conclusions

We have developed an asymptotic method to enable us to examine free liquid jets arising in
prilling. These jets are subjected to rotation, gravity and surface tension. Using a solvability
argument we have been able to determine nonlinear ordinary differential equations for the
steady trajectory. The linear stability of these steady solutions can be determined. Using
multiple scales, we find that the wavelength, wavespeed and growth rate of a linear mode
vary with distance along the jet. This analysis enables us to estimate the break up length of
the jet. We find that the breakup length of the jet increases with Weber number. Increasing the
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Figure 9. Graph showing Re(k) for the most unstable mode against s for various values of the Rossby number
(We = 100, F = 1). The top line shows Rb = 1, the middle line Rb = 2 and the bottom line Rb = 10.

Figure 10. Graph showing Im(k) for the most unstable mode against s for various values of the Rossby number
(F = 1, We = 100). The top line shows Rb = 1, the middle line Rb = 2 and the bottom line Rb = 10.

Rossby number or Froude number is found to decrease the break up length of the jet. We note
that nonlinear effects will become important during break up and a fully nonlinear unsteady
calculation is required to fully understand break up.
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Figure 11. Graph showing an estimate of the break up length of the jet divided by the radius of the jet plotted
against

√
We for various Froude and Rossby numbers obtained from the linear (spatial) stability analysis. The

top line represents Rb = 0·1, F = 1, the middle line Rb = 1, F = 10 and the bottom line Rb = 5, F = 20
(|A| = 0.01 and ε = 0·01).
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